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This study investigates teacher responses to a common set of high potential instances of student 
mathematical thinking to better understand the role of the teacher in shaping meaningful 
mathematical discourse in their classrooms. Teacher responses were coded using a scheme that 
disentangles the teacher move from other aspects of the teacher response, including who the 
response is directed to and the degree to which the student thinking is honored. Teachers tended to 
direct their response to the student who had shared their thinking and to explicitly incorporate ideas 
core to the student thinking in their response. We consider the nature of these responses in relation 
to principles of productive use of student mathematical thinking. 
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Recommendations for effective mathematics teaching stress the importance of engaging students 
in meaningful mathematical discourse (e.g., National Council of Teachers of Mathematics [NCTM], 
2014). Research has begun to help us understand how to effectively orchestrate discourse around 
written records of student work (e.g., Stein, Engle, Smith, & Hughes, 2008), but much less is known 
about how to effectively use the in-the-moment mathematical thinking that emerges during 
classroom mathematics discourse. One issue related to responding to student thinking is that not all 
student thinking warrants the same consideration. Rather, student thinking varies in the degree to 
which it provides leverage for accomplishing mathematical goals. Leatham, Peterson, Stockero, and 
Van Zoest (2015) described a framework to identify those instances of student thinking—MOSTs—
that provide such leverage, but little is known, as of yet, about effective responses to MOSTs. The 
study reported here investigated teacher responses to a common set of MOSTs. Better understanding 
such responses will contribute to better understanding the role of the teacher in shaping meaningful 
mathematical discourse in their classrooms. 

Literature Review 
Research on classroom discourse has identified patterns in teachers’ responses to student 

thinking. Mehan (1979) coined IRE—Initiation, Response, Evaluation—to describe a common 
pattern of classroom interaction where the teacher’s main follow-up to an elicited student response is 
to evaluate it. An IRE interaction is an example of what Wood (1998) referred to as funneling, where 
the teacher’s response is intended to corral students’ thinking within predetermined and often 
narrowly-defined parameters. By contrast, Wood characterized certain other teacher responses as 
focusing; in these responses a teacher “keep[s] attention focused on the discriminating aspects of the 
solution” (p. 175).  

Van Zee and Minstrell (1997) explored what they called a reflective toss—a pattern that consists 
of a student statement, teacher question, and additional student statements. Van Zee and Minstrell 
argued that changing the evaluation component of IRE to a question could positively impact the 
nature of classroom discourse by changing students’ expectations for participation. These results are 
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not unique; in general, research has found that teacher responses matter. Fennema et al. (1996) found 
that increases in teachers’ focus on student thinking in their classrooms were directly related to 
improvements in their students’ achievement. Kazemi and Stipek’s (2001) investigation revealed that 
teachers in high-press classrooms—classrooms in which the teacher responded to their students’ 
contributions to classroom discourse by pressing the students to further engage in thinking about 
important mathematics in their contributions—provided their students with increased learning 
opportunities.   

Other researchers have looked at collections of teacher moves that accomplish a particular 
purpose related to student thinking. Lineback (2015), for example, investigated the construct of 
redirection—“instances when a teacher invites students to shift or redirect their attention to a new 
locus” (p. 419). This work generated a taxonomy of redirections to deconstruct teacher responses and 
analyze the contribution of different redirection responses to instruction. Bishop, Hardison, and 
Przybyla-Kuchek (2016) described the mathematical contributions of students, the moves teacher 
made in response, and the relationship between these contributions and moves, through the lens of 
responsiveness, which they defined as the extent to which teacher responses “mutually acknowledge, 
take up, and reflect an awareness of student thinking” (p. 1173). Connor, Singletary, Smith, Wagner, 
and Francisco (2014) developed a framework that includes teacher responses to student thinking that 
support collective argumentation in the classroom. Their work provides important information for 
focusing on a particular type of student thinking—that which involves mathematical argumentation. 

In the work reported here, we narrow down the type of student thinking to MOSTs and consider 
the extent to which the teacher responses to those MOSTs accomplish the purpose of building on 
them. 

Theoretical Framework 
MOSTs (Leatham et al., 2015) are instances of student thinking worth building on—that is, 

“student thinking worth making the object of consideration by the class in order to engage the class 
in making sense of that thinking to better understand an important mathematical idea” (Van Zoest et 
al., 2017, p. 36). To take full advantage of these opportune instances of student thinking, one would 
want to seek to build on MOSTs in the moment. Such use encapsulates the core ideas of current 
thinking about effective teaching and learning of mathematics (e.g., NCTM, 2014), including that 
student mathematics is at the forefront and that students are positioned as legitimate mathematical 
thinkers, engaged in sense making, and working collaboratively. These ideas serve as the principles 
underlying our conceptualization of productive use of MOSTs (see Figure 1). 

 
1. The mathematics of the MOST is at the forefront. 
2. Students are positioned as legitimate mathematical thinkers. 
3. Students are engaged in sense making. 
4. Students are working collaboratively. 

Figure 1. Principles underlying productive use of MOSTs (Van Zoest et al., 2016). 

We theorize that building on MOSTs is a particularly productive way for teachers to engage 
students in meaningful mathematical learning. Van Zoest, Peterson, Leatham, & Stockero (2016) put 
forth a conceptualization of the teaching practice of building on MOSTs (see Figure 2). Together the 
principles (see Figure 1) and building subpractices (see Figure 2) provide a way to assess the extent 
to which teacher responses to MOSTs instantiate the practice of building. 
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1.  Make the object of consideration clear (make precise) 
2. Turn the object of consideration over to the students with parameters that put them in a 

sense-making situation (grapple toss) 
3. Orchestrate a whole-class discussion in which students collaboratively make sense of the 

object of consideration (orchestrate) 
4. Facilitate the extraction and articulation of the mathematical point of the object of 

consideration (make explicit) 

Figure 2. Sequence of subpractices of the teaching practice of building on MOSTs. 

Methodology 
The Scenario Interview (Stockero et al., 2015) is a tool to investigate how teachers think about 

responding to student thinking during instruction. During the interview teachers are presented with 
instances of mathematical thinking from eight individual students—four each from an algebra and a 
geometry context. The interviewee is situated as the teacher and asked to describe what they might 
do next were the instance to occur in their mathematics classroom and to explain why they would 
respond in that way. The Scenario Interview allowed us to compare teacher responses to a common 
set of student thinking. The analysis reported here focuses on responses to the four instances, two 
from each context, in which the student thinking was a MOST. The four MOSTs and their contexts 
are provided in Figure 3. 

 
Scenario Context MOST 

G1 
Students were sharing their solutions to the following 
task (a corresponding picture was on the board).  
Given two concentric circles, radii 5cm and 3cm, 
what is the area of the band between the circles? 

Chris shared his solution: “The radius of the big 
circle is 5 and the radius of the little circle is 3, 
so the gap is 2, so the area of the band is 4π 
cm2.” 

G3 

Pat explained how he got the same answer as 
Chris (4π cm2) a different way: “π times r2 for 
the big circle is π times 52, which is 10π and π 
times 32 is 6π for the little circle. I minused 
(sic) them and got 4π as my answer.” 

A2 

Students had been discussing the following task and 
had come up with the equation y = 10x + 25.  
Jenny received $25 for her birthday that she 
deposited into a savings account. She has a 
babysitting job that pays $10 per week, which she 
deposits into her account each week. Write an 
equation that she can use to predict how much she 
will have saved after any number of weeks. 

Casey said, “You could also change the story 
so the number in front of the x is negative.” 

A3 

The teacher asked, “How do we find the 
equation given any table?” and put this 
generic table of values [to the right] on 
the board for the students to use in their 
explanation.  

Jamie said, “I found the number in front of the 
x by subtracting the y-values in the table, 21 - 
19, so that number is 2.” 

Figure 3. MOSTs that formed the basis of the teacher responses and their contexts. 

Data Analysis 
The data for this study consisted of video recorded interviews with 25 secondary school 

mathematics teachers from several sites across the United States. These teachers were representative 
of a set of 44 teachers who participated in our larger project. We used Studiocode (SportsTec, 1997-
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2015) video analysis software to segment each interview into the instances of student thinking and 
the teacher responses to each individual instance—everything a teacher said about how they would 
respond to that instance. Transcriptions of the videos were used to facilitate the analysis. For the 4 
instances and 25 teachers of this study, there were a total of 100 teacher responses. In one of those 
responses the teacher did not provide a description of how they would respond to the instance 
because they were not able to envision it happening in their classroom, thus 99 teacher responses 
were analyzed for this study.  

The resulting teacher responses were then coded using the Teacher Response Coding Scheme 
(TRC) (Peterson et al., in press), a scheme that disentangles the teacher move from other aspects of 
the teacher response, including the Actor and the degree to which the student thinking is honored 
(Recognition-Action and Recognition-Idea). Figure 4 provides the TRC coding categories and codes 
that were included in this analysis. 

 
Category Coding Category Description Codes 

Actor Who is publicly asked to consider the 
student thinking 

teacher, same student(s), 
other student(s), whole class 

Recognition-
Action 

The degree to which the teacher response 
uses the student action, either verbal 
(words) or non-verbal (gestures or work) 

explicit, implicit, or not 

Recognition-
Idea 

The extent to which the student is likely to 
recognize their idea in the teacher response 

core, peripheral, other, cannot infer, not 
applicable 

Move 
What the actor is doing or being asked to do 
with respect to the instance of student 
thinking 

adjourn, allow, check-in, clarify, collect, 
connect, correct, develop, dismiss, 
evaluate, justify, literal, repeat, validate 

Figure 4. Subset of the Teacher Response Coding Scheme (TRC) used in this paper. 

Results and Discussion 
We discuss findings related to specific aspects of teachers’ responses to MOSTs as well as 

interactions among those aspects. We first focus on the Actor and Move and their interactions, 
followed by the individual Recognition categories and their interactions. In doing so, we highlight 
how a response might adhere to the principles underlying productive use of MOSTs or contribute to 
enacting subpractices of building.  

Actor and Move 
With respect to the actor, the majority of teacher responses (66%) had the same student as the 

actor, meaning that the teacher proposed a move that was directed back to the student who had 
contributed the original thinking (see Table 1). In about 24% of the instances, the teacher move was 
directed to the whole class.  

With respect to the moves, two occurred much more frequently than the others; together, develop 
(37%) and justify (18%) moves accounted for over half of the data. In a develop move, the teacher 
provides or asks for an expansion of the student thinking that goes beyond a simple clarification. In a 
justify move, the teacher asks for or provides a justification of the instance. Since our data showed 
that these moves had a same student or whole class actor, in both cases the teacher was asking for, 
rather than providing, the expansion or justification. 
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Table 1: Actor and Move 
 Same Student Whole Class Teacher Other Student(s) TOTAL 
Adjourn 0 0 3 0 3 
Allow 0 3 2 1 6 
Clarify 5 0 0 0 5 
Collect 2 4 0 1 7 
Connect 1 4 0 1 6 
Correct 1 0 0 0 1 
Develop 32 5 0 0 37 
Dismiss 0 0 1 0 1 
Evaluate 0 4 0 0 4 
Justify 16 2 0 0 18 
Literal 4 2 0 0 6 
Repeat 4 0 0 1 5 
TOTAL 65 24 6 4 99 
 
Taken together, the Actor and Move findings suggest that teachers might instinctively respond to 

MOSTs by asking the student who provided the thinking to either expand upon or justify their idea. 
Because MOSTs are instances that a teacher can build upon to “engage the class in making sense of 
[student] thinking to better understand an important mathematical idea” (Van Zoest et al., 2017, 
p. 36), however, asking the student to develop or justify their idea may not always be necessary and 
may actually limit students’ opportunities to make sense of mathematical ideas. For example, 
consider scenario A2 (see Figure 3). It turned out that nearly half of the instances of develop moves 
with same student actor (15 of 32) occurred in response to this scenario. The most common teacher 
move in this instance was to ask Casey, the student who made the suggestion, to explain how they 
would change the story (e.g., “Well what do you mean? What sort of an equation, or what sort of a 
real life situation can you think of where that would be a negative?” (Teacher 6 [T6]). Contrast this 
response with a similar one directed instead to the whole class: “Interesting comment… who can 
come up with a story, a situation that would match what Casey is saying?” (T7). In this case, we 
would argue that directing the response to the whole class might be more productive, as it would 
engage all of the students in trying to come up with a situation where the coefficient is negative, 
likely advancing the entire class’s understanding of the mathematics of linear equations.  

Similarly, consider scenario A3. More than two-thirds of the justify moves with same student 
actor (11 of 16) occurred in response to this scenario. The most common response to this instance 
was to ask Jamie why they used the numbers that they did (e.g., “Why did you do the 21 minus the 
19?  Why didn’t you do the 19 minus the 15?” (T14)). This response would allow Jamie to justify 
their idea, but does not engage the whole class in thinking about the importance of taking into 
account the differences between x-values as well as the y-values when calculating the rate of change. 
Consider an alternate response directed to the whole class, such as: “So [Jamie] got 2 from 
subtracting those two numbers, so what if I pick 19 and 15? If I subtract those, I get 4. Why did we 
get two different answers?" (T21). Such a response would allow all of the students to consider the 
mathematics of rate of change. We argue that teachers who respond to MOSTs by asking the student 
who shared the original thinking for justification may be focused on the details of the situation, 
whereas those who ask the whole class for justification may be more focused on the big 
mathematical picture.  

In general, responses that turn the mathematics of a MOST over to the whole class instead of 
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engaging a single student better adhere to principles underlying productive use of MOSTs. Such 
responses provide all students the opportunity to collaboratively engage in making sense of the 
mathematics of the MOST. In doing so, they put the students’ mathematics at the forefront and 
position all students as legitimate mathematical thinkers. These responses may also demonstrate an 
ability to discriminate between those instances that need to be made precise before the teacher can 
turn them over to students (grapple toss) and those that do not. 

Although the goal of building on MOSTs is to have the whole class consider the student 
mathematics of the instance, there are some cases where directing the initial teacher response back to 
the same student might be desirable. For example, in scenario G1, it is quite possible that other 
students in the class would not initially understand Chris’ explanation, so the most common teacher 
response in our data, “ask him to explain by using…pictures and words, like how he came up with 
the 4π” (T18) may be the teacher helping to make Chris’ idea precise before other students are asked 
to consider it. A move such as this could be an instantiation of the first subpractice of building (make 
precise)—an important first step in setting the teacher up to engage in the next building subpractice 
(grapple toss), in which they turn the now-precise student thinking over to the class for consideration. 

Recognition of Student Actions and Ideas 
The Recognition codes operationalize the extent to which the student who provided the instance 

would recognize their thinking in the teacher’s response. As seen in Table 2, the majority of teacher 
responses either explicitly (54%) or implicitly (32%) incorporated the student’s words (verbal) or 
gestures or work (non-verbal). Only 13% of responses would likely not be recognizable to the 
student as incorporating their own actions. Moreover, the vast majority of the responses (75%) 
remained core to the idea in the instance of student thinking. Together the results indicate that a large 
percentage of the teacher responses were both explicit and core (43%), meaning that the teachers in 
this study honored the student thinking by explicitly incorporating the student’s verbal or non-verbal 
actions and staying focused on the student’s core ideas in their described response. For example, the 
response to scenario G1, “I would want to know what he means by gap. Um, and maybe have him 
illustrate that visually, just to kind of picture that as a class,” (T4) is explicit and core as it 
incorporates both the student’s words (gap) and his ideas (having him illustrate his idea visually). A 
response such as this aligns with the principles underlying productive use of MOSTs, as it positions 
the student as a legitimate mathematical thinker by keeping the students’ mathematics at the forefront. 
In general, many teacher responses that are core to the student ideas and implicitly incorporate 
student actions also adhere to the same principles, but may be problematic in that it may not be clear 
to the student(s) what mathematics is under consideration. For example, the response to scenario A3, 
“So I would want to ask her, ‘Why did you do this? What are you thinking? Tell us a little bit more,’” 
(T24) fails to specify what mathematics the teacher wants to know more about. Among other things, 
the teacher could be wondering why the student subtracted or why they chose to select the numbers 
that they did. 

Table 2: Recognition of Student Actions and Ideas 
 Student Ideas  
 Core Peripheral CNI, Other, N/A TOTAL 

Student Actions  
Explicit 43 10 1 54 
Implicit 26 4 2 32 
Not 5 1 7 13 

 TOTAL 74 15 10 99 

Conclusion 
Our findings revealed that the teachers in this study most often responded to MOSTs by making a 
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develop or justify move that was directed to the same student who had shared the initial thinking. 
Additionally, they did so in ways that stayed core to the ideas in the student thinking and often 
explicitly incorporated the students’ actions.  

Responses that either explicitly or implicitly incorporate core ideas of a student’s contribution 
signal that these teachers value the students’ contributions. We also see such responses positioning 
the students as legitimate mathematical thinkers who can make valid contributions to the 
development of the mathematics in the classroom. Hence the words and idea(s) teachers use in their 
responses to students’ ideas could matter in terms of how students are positioned in the classroom. 
When the student action that is being considered is explicit, it is easier for the whole class to 
recognize that student thinking is being honored.  

MOSTs are prime opportunities for teachers to enact the building practice, but teachers’ 
tendencies to direct their responses to the student who had shared their idea could prevent them from 
doing so. As we have illustrated, directing a response to the same student could be productive in 
cases where the student’s idea needs to be made precise before others can consider the idea, but 
many MOSTs do not require clarification. In these instances, rather than going back to the student, it 
would be more productive to toss the already precise student thinking to the whole class to provide 
all students an opportunity to collaboratively make sense of the mathematics.   

The findings of this study advance research on teachers’ in-the-moment responses to student 
mathematical thinking by moving beyond looking at what moves teachers make, to considering to 
whom those moves are directed and to what extent those moves would allow students’ ideas to be 
recognizable to them or other students. In doing so, the study builds on the approaches taken in past 
research on teacher responses to explore more refined approaches that allow the field to look at 
teacher responses in new ways. Decomposing teacher responses in the way we have in this study has 
the potential to help teacher educators and researchers focus their development efforts. For example, 
if the majority of a teacher’s responses honor student thinking, but engage only the student who 
contributed the instance, professional development work with the teacher could focus specifically on 
understanding the potential in directing a response to the whole class, and when it would and would 
not be appropriate to do so. Focused efforts such as this would allow professional developers to 
leverage teachers’ strengths and thus develop teachers’ practice more effectively. 
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