Viewing Classroom Mathematics Discourse Through Two Complementary Lenses

Building on Mathematical Opportunities in Student Thinking

Shari L. Stockero Blake E. Peterson Keith R. Leatham Laura R. Van Zoest

Learning to Support Productive Collective Argumentation in Secondary Mathematics Classrooms

AnnaMarie Conner Jonathan Foster Laura Singletary Hyejin Park Yuling Zhuang

Setting up the clip

Is it possible to select a point \hat{B} on the y-axis so that the line x + y = 6 goes through both points A and B? Explain why or why not. Is it possible to select a point \hat{B} on the y-axis so that the line x + y = 6 goes through both points A and B? Explain why or why not.

Building on Mathematical Opportunities in Student Thinking

Shari L. Stockero

Blake E. Peterson

Keith R. Leatham

Laura R. Van Zoest

Building on MOSTs: Investigating Productive Use of High-Leverage Student Mathematical Thinking

This research report is based on work supported by the U.S. National Science Foundation (NSF) under Grant Nos. DRL-1720410, DRL-1720566, and DRL-1720613. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. A MOST is a Mathematical Opportunity in Student Thinking

Building on a MOST is engaging the class in making sense of the MOST to better understand the mathematics of the MOST.

CONVERSATIONAL BUBBLE

Is it possible to select a point \overline{B} on the y-axis so that the line x + y = 6 goes through both points A and B? Explain why or why not.

Claim

8:04 Andre: The thing is that the point is (0,3) and if you plug it into that equation it comes out with 3 equals 6 which is false. Basically </br><Mr. Kennedy: Okay> 'kay so the point (0,3) wouldn't work.

8:16 Mr. Kennedy: Okay so um so you're referring to this point B [points to (0,3) on the board.] < Andre: Yeah.> Right? And-and you're saying the point (0,3) wouldn't work. Can you tell us more about like why that wouldn't work?

8:29 Andre: Can I use the marker and do it?

Is it possible to select a point \hat{B} on the y-axis so that the line x + y = 6 goes through both points A and B? Explain why or why not.

9:22 Mr. Kennedy: Okay go for it.

Is it possible to select a point \hat{B} on the y-axis so that the line x + y = 6 goes through both points A and B? Explain why or why not.

9:23 Olivia: Um well I think it's a lot easier for us to comprehend like stuff in slope-intercept form because that's what we've been learning about for a while. So, if you just convert, like x plus y equals 6 into slope-intercept form then its y equals negative x plus 6 and then that doesn't work with the two points cause the slope wouldn't go through those.

9:48 Mr. Kennedy: Kay so you're saying if we took this equation and switched it to [writes equation in slope-intercept form] converted it to slope-intercept form < Olivia: Mhm> it would be y equals negative x plus 6. < Olivia: Yep.> and then tell me more about um about this original claim.[circle motion to board around point B on graph]

10:19 Olivia: I'm refuting it cause you can't just add 3 plus 3 cause they're not on the same point of the graph, they're two separate points.

Thank you!

BuildingOnMosts.org

Learning to Support Productive Collective Argumentation in Secondary Mathematics Classrooms

AnnaMarie Conner Jonathan Foster Laura Singletary Hyejin Park Yuling Zhuang

Collective Argumentation

Collective argumentation: a process by which a group of people establishes the veracity of a claim

- Argumentation and proof are critical in mathematics (foregrounds reasoning and sense making in mathematics)
- Literature contains multiple examples of teachers facilitating collective argumentation (e.g., Krummheuer, 1995)

Collective Argumentation in Classrooms

Arguments consist of...

- Claims, statements whose validity is being established
- Data, support provided for the claim
- Warrants, statements that connect data with claim
- •*Qualifiers*, statements that show the strength of the warrant
- •*Rebuttals,* statements that provide circumstances under which a warrant would not hold

Adaptation of Toulmin's diagrams

Extended Toulmin Diagrams

Teacher Support for Collective Argumentation (TSCA) Framework

 Table 1
 Teacher support for collective argumentation framework

Direct contributions		Questions	Questions		Other supportive actions	
Claims	Statements whose validity is being established	Requesting a factual answer	Asks students to provide a mathematical fact	Directing	Actions that serve to direct the students' attention and/or the argument	
Data	Statements provided as support for the claims	Requesting a method	Asks students to demonstrate or describe how they did or would do something	Promoting	Actions that serve to promote mathematical exploration	
Warrants	Statements that connect data with claims	Requesting an idea	Asks students to compare, coordinate, or generate mathematical ideas	Evaluating	Actions that center on the correctness of the mathematics	
Rebuttals	Statements describing circumstances under which the warrants would not be valid	Requesting elaboration	Asks students to elaborate on some idea, statement, or diagram	Informing	Actions that provide information for the argument	
Qualifiers	Statements describing the certainty with which a claim is made	Requesting evaluation	Asks students to evaluate a mathematical idea	Repeating	Actions that repeat what has been or is being stated	
Backings	Usually unstated, dealing with the field in which the argument occurs					

9:10 Teacher: So what do you think about- what do you think about that? Olivia.

9:23 Olivia: Um well I think it's a lot easier for us to comprehend like stuff in slope-intercept form because that's what we've been learning about for a while. So, if you just convert, like x plus y equals 6 into slope-intercept form then its y equals negative x plus 6 and then that doesn't work with the two points cause the slope wouldn't go through those.

9:48 Teacher: Okay, so you're saying if we took this equation and switched it to [*writes equation in slope-intercept form*] converted it to slope-intercept form < Olivia : Mhm> it would be y equals negative x plus 6. < Olivia : Yep.> and then tell me more about um about this original claim [*circle motion to board around point B on graph*].

8:50 Teacher: So what do you think about- what do you think about that? Olivia.

9:23 Olivia: Um well I think it's a lot easier for us to comprehend like stuff in slope-intercept form because that's what we've been learning about for a while. So, if you just convert, like **x plus y equals 6 into slope-intercept form then its y equals negative x plus 6** and then that doesn't work with the two points cause the slope wouldn't go through those.

9:48 Teacher: Okay, so you're saying if we took this equation and switched it to [*writes equation in slope-intercept form*] converted it to slope-intercept form < Olivia : Mhm> it would be y equals negative x plus 6. < Olivia : Yep.> and then tell me more about um about this original claim [*circle motion to board around point B on graph*].

8:50 Teacher: So what do you think about- what do you think about that? Olivia.

9:23 Olivia: Um well I think it's a lot easier for us to comprehend like stuff in slope-intercept form because that's what we've been learning about for a while. So, if you just convert, like x plus y equals 6 into slope-intercept form then its y equals negative x plus 6 and then that doesn't work with the two points cause the slope wouldn't go through those.

9:48 Teacher: Okay, so you're saying if we took this equation and switched it to [*writes equation in slope-intercept form*] converted it to slope-intercept form < Olivia : Mhm> it would be y equals negative x plus 6. < Olivia : Yep.> and then tell me more about um about this original claim [*circle motion to board around point B on graph*].

8:50 Teacher: So what do you think about- what do you think about that? Olivia.

9:23 Olivia: Um well I think it's a lot easier for us to comprehend like stuff in slope-intercept form because that's what we've been learning about for a while. So, if you just convert, like x plus y equals 6 into slope-intercept form then its y equals negative x plus 6 and then that doesn't work with the two points cause the slope wouldn't go through those.

9:48 Teacher: Okay, so you're saying if we took this equation and switched it to [*writes equation in slope-intercept form*] converted it to slope-intercept form < Olivia: Mhm> it would be y equals negative x plus 6. < Olivia: Yep.> and then tell me more about um about this original claim [*circle motion to board around point B on graph*].

8:50 Teacher: So what do you think about- what do you think about that? Olivia.

9:23 Olivia: Um well I think it's a lot easier for us to comprehend like stuff in slope-intercept form because that's what we've been learning about for a while. So, if you just convert, like x plus y equals 6 into slope-intercept form then its y equals negative x plus 6 and then that doesn't work with the two points cause the slope wouldn't go through those.

9:48 Teacher: Okay, so you're saying if we took this equation and switched it to [writes equation in slope-intercept form] converted it to slope-intercept form < Olivia: Mhm> it would be y equals negative x plus 6. < Olivia: Yep.> and then tell me more about um about this original claim [circle motion to board around point B on graph].

"So are you refuting this claim or agreeing with this claim?"

- This question seems similar to asking for agreement
- Our framework has a consensus question in the evaluation category that captures questions asking if students agree.
- However, this question is both asking the student to state whether they agree or disagree and asking them how their line of reasoning relates to the larger argument.
- Thus, the question is asking the student to position their response in relation to the reasoning within the desired topic of conversation.

Unexpected Structure: Rebuttal/Claim

- Extended Toulmin diagrams are useful for revealing structures of classroom discourse.
- Our diagram revealed an argument structure that we do not often encounter in novice teachers' practice: students constructed a rebuttal that also serves as a claim in the argument.
- This structure appeared because of the teacher's actions to make the students' thinking explicit by requesting warrants for the rebuttal.
- Fostering productive mathematical discussions includes supporting students to contribute rebuttals.

Connections across Projects

Using Extended Toulmin Diagrams and TSCA Framework, we noticed:

- 1. Unexpected teacher support: A teacher might ask a question to ask students to position a claim within the desired topic of conversation.
- 2. Unexpected diagram structure: rebuttal/claim, which appeared because of the teacher's actions to make the students' thinking explicit by requesting warrants for the rebuttal.

Discussion Questions

- What connections do you see between these lenses and your initial noticings?
- What connections do you see to other lenses for viewing mathematics teaching practice?
- What benefits do you see for viewing teaching through alternate/additional/other lenses?